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Abstract. Finite size effects on dynamical heterogeneity are studied in liquid silica with Molecular Dy-
namics simulations using the BKS potential model. When the system size decreases relaxation times are
found to increase in accordance with previous results in finite-size simulations and confined liquids. It has
been suggested that this increase may be related to a modification of the spatially heterogeneous dynamics
in confined liquids. In agreement with this hypothesis we observe a decrease of the spatially heterogeneous
dynamics when the size decreases. The spatially heterogeneous dynamics is usually characterized by the
dynamical aggregation of the most or the least mobile atoms. However we find that the decrease of the
dynamical aggregation associated to the least mobile atoms is much more important than the decrease
associated to the most mobile atoms when the size decreases. This result associated with a slowing down
of the liquid is surprising as it is expected that the dynamical aggregation of the least mobile atoms should
increase the slowing down of the liquid dynamics. The decrease of the heterogeneous behaviour is also in
contradiction with the increase of the spatially heterogeneous dynamics observed in liquids confined inside
nanopores. However, an increase of the non-Gaussian parameter appears both for the confinement inside
nanopores and for the finite size simulations. As the non-Gaussian parameter is usually associated with
the heterogeneous dynamics, the increase of the non-Gaussian parameter together with a decrease of the
spatially heterogeneous dynamics is also surprising.

PACS. 61.43.Fs Glasses – 64.70.Pf Glass transitions – 66.10.Cb Diffusion and thermal diffusion

Introduction

The existence of cooperative molecular or atomic mo-
tions in supercooled glass-forming liquids is commonly
invoked [1–3] as the likely explanation for the dramatic
increase of the viscosity as the liquid is cooled toward its
glass transition. The existence of spatially heterogeneous
dynamics in supercooled liquids has been reported either
experimentally near the glass transition temperature or
with molecular dynamics simulations well above this tem-
perature [2,3]. From MD simulations these heterogeneities
are usually characterized by an aggregation of the most
mobile atoms [2–12] and of the least mobile atoms [2,12].
Whether dynamical heterogeneities are partly the origin of
the strange behavior of glass-forming liquids or are only
an interesting consequence of it, is however still a mat-
ter of conjecture. And whether the cooperative motions
expected by some theories [1] may be associated with the
cooperative motions of the heterogeneous dynamics is also
still a matter of debate.

When the liquid is confined inside a pore a few
nanometers across the cooperative motions will not be
able to extend over a distance larger than the pore size.
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As a consequence, a modification of the dynamical prop-
erties is expected which may give information on the na-
ture of the cooperative motions [2,3,9,13,14]. Indeed, the
physical properties of the liquid change drastically with
confinement [9,13,15,16]. However, if these changes orig-
inate partly from finite size effects, anisotropy and sur-
face effects also play an important role [13,14]. In other
words, liquids confined inside nanopores are subject to dif-
ferent contributions: a strong surface contribution and a
finite-size contribution are both present [13,15]. Surface
contributions predominate near the surface of the pore
but decrease rapidly as the distance from the surface in-
creases [9,13,15]. On the contrary, finite-size effects do not
depend on the distance from the surface of the pore. As a
result when pore diameters are large enough to eliminate
surface effects and small enough for non negligible finite
size effects, finite-size effects are expected to predominate
in the center of the pore. In agreement with this view-
point, it has been observed for various liquids that the
alpha relaxation times may be fitted by the sum of a de-
creasing exponential from the pore surface (surface effect)
and a constant part (finite-size effect) [13].

In this context, a direct investigation of finite-size
effects may help to separate the different contributions
of the above-mentioned mechanisms that appear when a
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liquid is confined inside a pore. These studies may also give
indirect information on the size of cooperative motions in
the liquid. More generally, an investigation of finite-size
effects may give information on the size of the phenom-
ena of physical importance for the relaxation mechanisms
in the liquid. A simple method, which seems not to be
affected by surface effects is to use a finite cubic box of
size L with periodic boundary conditions (p.b.c.). Con-
fined liquids dynamics displays an increase or a decrease of
relaxation times due to surface contributions [15] depend-
ing on the roughness of the surface. However, for finite
boxes with p.b.c simulations, when the size L decreases,
it has been found [17–19] in various liquids, including sil-
ica [18,19] that relaxation times increase. This increase
was found to be larger for strong liquids [19] like silica
than for fragile liquids [20]. The reason for this increase
is however still unclear. It has been suggested that this
increase may be related to a modification of the spatially
heterogeneous dynamics in confined liquids [17]. In agree-
ment with this hypothesis we observe a decrease of the
dynamical heterogeneities associated with the most and
the least mobile atoms when the size L decreases. How-
ever, we find that the decrease of the dynamical aggrega-
tion associated with the least mobile atoms is much more
important than the decrease associated with the most mo-
bile atoms. This result of a slowing down of the liquid is
surprising as it was expected that the dynamical aggrega-
tion of the least mobile atoms would increase the slowing
down of the liquid dynamics. The decrease of the het-
erogeneous behaviour is also in contradiction with the in-
crease of the heterogeneities observed in liquids confined in
nanopores [9]. Meanwhile an increase of the non-Gaussian
parameter appears both in nanopore confinement and in
the finite size simulations. As the non-Gaussian parame-
ter is usually associated with dynamical heterogeneities,
the increase of the non-Gaussian parameter together with
a decrease of dynamical heterogeneity is also surprising.
Finally, it has been found previously in silica [21] that
the Kohlrausch-Williams-Watts (KWW) parameter as-
sociated with the intermediate scattering function does
not show significant finite-size effects. When compared to
homogeneous dynamics, heterogeneous dynamics will in-
crease [2,3,9] the stretching of the correlation functions,
and so the KWW parameter (or stretching parameter)
has been related by some authors to the heterogeneous
dynamics [2,3]. From this viewpoint a decrease of the het-
erogeneity will then increase this parameter (i.e. decrease
the stretching). That the KWW parameter doesn’t show
significant finite-size effects shows that another cause com-
pensates the decrease of the heterogeneity for the stretch-
ing parameter evolution.

Calculation

Our simulations use the Verlet algorithm [22] to solve the
equations of motions with the BKS potential [23,24]. This
potential was reported to be one of the most realistic po-
tentials in silica for the study of the dynamical proper-
ties [25]. A very short range repulsive part was added, as

described by Guissani and Guillot [24], in order to elim-
inate the possible short range divergence of this poten-
tial. The reaction field method [22] was employed to take
into account long-range electrostatic interactions under
the same conditions as described in reference [26]. The
reaction field method increases the long range screening
of the potential function and leads to a slight decrease
of the diffusivity in comparison with the original model.
This modification leads to diffusion coefficients for the
oxygen and silicon atoms that are in slightly better agree-
ment with the experimental data [26]. This modification
of the potential function produces [26] activations energies
of 4.72 eV for the oxygen atoms and 5.36 eV for the silicon
atoms, which is also in relatively good agreement with the
experimental data of 4.7 eV [27] and 6.0 eV [28].

The time step was chosen equal to 10−15 s. The system
is heated to a temperature of 7000 K to ensure homog-
enization. It is then cooled to the different temperatures
under study using a Berendsen thermostat [29]. The simu-
lations are then aged by 20 nanoseconds before any treat-
ment. This very large aging time has been found to be
necessary in order to ensure stabilization at the tempera-
ture under study. Here, the aging time is evaluated from
the decrease of various correlation functions to zero and
from the mean square displacement evolution to a pure
diffusive behaviour. The absence of a constant long time
drift in the studied correlation functions is then verified
during the treatment. In order to study the size effects we
have used various box sizes ranging from 20 Å to 50 Å in
width, i.e. from 576 to 9000 atoms. The density was set
to a constant of 2.3 g/cm3 in our simulations. The simu-
lations are performed at constant temperature in the (N ,
V , T ) ensemble, below the MCT critical temperature for
this model TC = 3330 K.

In the Markovian approximation, the self-part of the
Van Hove correlation function Gs(r, t) has a Gaussian
form. This function is defined by

Gs(r, t) =

〈
1
N

N∑
i=1

δ (r + ri(t0) − ri(t + t0))

〉
(1)

where 4πr2Gs(r, t) represents the probability for a particle
to be at time t+t0 at a distance r from its position at time
t0. Departure from this Gaussian form has been found in
various glass forming liquids and is thought to be due
to dynamical heterogeneities. Such deviations are usually
characterized by the Non-Gaussian parameter:

α2(t) = 3
〈
r4(t)

〉
/5

〈
r2(t)

〉2 − 1 (2)

where 〈r2(t)〉 is the mean square displacement.
We define the mobility µi,t0(t) of atom i at time t0

within a characteristic time t, by the relation [10,30]:

µi,t0(t) = |ri(t + t0) − ri(t0)| /(
〈
r2(t)

〉
)0.5. (3)

The mobility of atom i at time t0 is then defined as the
normalized displacement of atom i during a time t. In the
rest of the discussion, we will omit the time t0 which will
disappear in the mean statistical values. We then select
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atoms of high or low mobility for the calculation of the
dynamical heterogeneity. This selection is then dependent
on the time t chosen for the definition of the mobility µi(t).
Here, we define the 6 percent of atoms with largest mobil-
ity as most mobile (MM), and as least mobile (LM) the
6 percent of atoms with lowest mobility. We then select
atoms of high and low mobility for the calculation of the
dynamical heterogeneity. This selection of atoms of high
and low mobility depends on the time t chosen in the defi-
nition of the mobility. We define here the function [10,12]:

A+(r, t) = Gmm(t)(r, 0)/G(r, 0) − 1. (4)

In this formula Gmm(t)(r, 0) is the radial distribution func-
tion between the most mobile oxygen atoms, and G(r, 0) is
the mean radial distribution function between two oxygen
atoms. A+(r, t) gives a measure of the correlation increase
between mobile atoms. Similarly we define A−(r, t) for the
least mobile atoms. In order to eliminate infinite values,
we define A+/−(r, t) = 0 when G(r, 0) < 0.05. This def-
inition implies that A+/−(r, t) is only meaningful above
a certain cut-off distance defined by G(r, 0) > 0.05. This
cut-off distance is here 2.2 Å for oxygen atoms.

We then define the integrals I+/−(t) of the functions
A+/−(r, t) by [10,12]:

I+/−(t) =

RC∫
0

A+/−(r, t).4πr2dr. (5)

This definition differs from the definition in reference [12]
by a factor N/V . In our simulations A+/−(r, t) is only de-
fined for r < L/2, and the box size L evolves from 20 to
50 Å. In order to eliminate direct truncation effects on the
evolution of the function I+/−(t) with the size of the box,
we have truncated the integral in the following calcula-
tions at a cut-off value RC = 10 Å which corresponds to
the shortest L/2 value investigated. In our notations, the
functions A−(r, t) and I−(r, t) correspond to the least mo-
bile atoms while functions A+(r, t) and I+(t) correspond
to the most mobile atoms. The functions A+/−(r, t) rep-
resent the correlation increase between atoms of approx-
imately the same mobility, and distant of r. Thus, the
functions I+/−(t) represent the global increase of the cor-
relation between atoms of high (I+) or low (I−) mobility.
Following reference [12] we will name the function I+/−(t):
Intensity of the aggregation. We finally define the charac-
teristic times t+ and t− as the times that correspond to the
maximum of the functions I+(t) and I−(t) respectively.

Results

Figure 1 shows the non-Gaussian parameter α2(t) (2) and
the mean square displacement 〈r2(t)〉 of oxygen atoms,
for various system sizes L ranging from 20 Å to 50 Å.
We observe in Figure 1 an increase of the non-Gaussian
parameter when the system size L decreases. As usual
in glass-forming liquids, this increase of the non-Gaussian

Fig. 1. Non Gaussian parameter for oxygen atoms in liquid sil-
ica for different system sizes. The temperature is 3100 K. From
bottom to top: continuous line: L = 50 Å (N = 9000 atoms),
short dashed line L = 40 Å (N = 4608 atoms), bold dashed
line: L = 25 Å (N = 1125 atoms), dotted line: L = 20 Å (N =
576 atoms). The Non-Gaussian parameter decreases when the
size of the box increases. Inset: Mean square displacement for
oxygen atoms (Å2) in liquid silica for different system sizes.
The temperature is 3100 K. From top to bottom: Continuous
line: L = 50 Å (N = 9000 atoms), short dashed line (super-
imposed on the continuous line) L = 40 Å (N = 4608 atoms),
bold dashed line: L = 25 Å (N = 1125 atoms), dotted line:
L = 20 Å (N = 576 atoms). 〈r2(t)〉 is plotted on a logarithmic
scale.

parameter is observed together with a slowing down of the
dynamics of the liquid [13]. This slowing down has been
reported previously by different authors [18,19]. In partic-
ular, it has been demonstrated [19] that the short time dy-
namics (for t < 0.1 ps) was not affected by the system size
modification while the long time dynamics slows down. In
order to illustrate this evolution, in the inset of Figure 1
we have plotted the mean square displacement evolution
with the system size at a temperature of 3100 K. We ob-
serve in the inset that the modification of the mean square
displacement appears around the end of the plateau time
regime. This result suggests that the system size modifi-
cation affects the probability for an atom to escape the
cage constituted by its neighbours [31]. Because dynam-
ical heterogeneity is also at a maximum around the end
of the plateau time regime, this result agrees well with
an interpretation of size effects resulting from a modifi-
cation of the spatially heterogeneous dynamics [17]. This
result may be seen clearly in Figure 1 which displays the
non-Gaussian parameter time evolution together with the
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mean square displacement time evolution, if we use the
non-Gaussian parameter as a measure of the dynamical
heterogeneity. In Figure 1 we observe indeed that the max-
imum of the non-Gaussian parameter corresponds to the
time regime where the mean square displacement modifi-
cation begins. On the other hand, the observed increase of
the non-Gaussian parameter seems to be in contradiction
with the expected decrease of the dynamical heterogeneity
when the system size decreases.

We also observe in Figure 1 that the non-Gaussian
parameter increases strongly as the half system size (L/2)
decreases below 12.5 Å. In parallel we observe that the
mean square displacement also changes strongly when the
same system size is crossed. These results suggest that
the size of cooperative motions at the temperature under
study (3100 K) is around 12.5 Å. The characteristic time
t∗ which corresponds to the maximum of the non-Gaussian
parameter also increases for the same system size, but only
slightly as seen in Figure 1. We note that this increase of
t∗ is much weaker than that observed due to a decrease in
temperature corresponding to the same maximum value
of the non-Gaussian parameter. A slowing down of the
dynamics associated with an increase of the non-Gaussian
parameter may also be observed when supercooled liquids
are confined inside pores a few nanometers across [13].
However, the increase of the non-Gaussian parameter and
the dynamical slowing down are much larger in nanopore
confinement than is observed here for the same sizes of
confinement. In agreement with previous studies of various
surfaces contributions [15], this result suggests that the
slowing down of the dynamics and the associated increase
of the non-Gaussian parameter in nanopores is due largely
to the interaction with the surface of the pore.

In supercooled liquids the non-Gaussian parameter (2)
usually increases when the temperature decreases and this
evolution is associated with an increase of the dynamical
heterogeneity. The time evolution of the non-Gaussian pa-
rameter corresponds also to the time evolution of dynam-
ical heterogeneity. These behaviours have been observed
in particular in liquid silica [8,10] and in various glass-
formers. For these reasons among others, in glass-forming
liquids the non-Gaussian parameter is usually associated
with the presence of dynamical heterogeneity. We will now
investigate the evolution of the dynamical heterogeneity
when the system size decreases. When the system size de-
creases, the dynamical aggregation will not be able to ex-
tend over distances larger than the system size, and this
truncation effect leads to a decrease in the dynamical het-
erogeneity. In other words, a decrease of Rc due to the de-
crease of the box size, in equation (5) leads to a decrease
of I(t), because A(r, t) is positive. Then the question of
another non-trivial effect on the heterogeneity arises. We
will focus our attention on this question (i.e. on the evo-
lution of the heterogeneity with a fixed cut-off Rc) in the
forthcoming paragraphs, followed by a further study of the
direct truncation effect.

Figures 2a and 2b show the functions A+(r, t) and
A−(r, t) versus distance r for different values of time t, in-
cluding the time (t+ or t−) corresponding to the maximum

(a)

(b)

Fig. 2. (a) Function A+(r, t) = Gmm(t)(r, 0)/G(r, 0) − 1 for
t = t+ = 65 ps (continuous line) corresponding to the maxi-
mum of the function I+(t) (second peak) and for t = 380 ps
(dashed line) corresponding to the third peak of the function
I+(t). The temperature is 3100 K. (b) Function A−(r, t) =
Glmlm(t)(r, 0)/G(r, 0) − 1 for t = t− = 2500 ps (continuous
line) corresponding to the maximum of the function I−(t) and
for t = 380 ps (dashed line). The temperature is 3100 K. Inset:
same curves on a Logarithmic scale.
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(a) (b)

Fig. 3. (a) Function I+(t) =
∫ RC

0
A+(r, t) · 4πr2dr with Rc = 10 Å, for the oxygen atoms. This definition differs from the

definition in reference [12] by a factor N/V . Different system sizes are considered: Full circles: L = 50 Å (N = 9000 atoms),
continuous line L = 40 Å (N = 4608 atoms), empty circles: L = 25 Å (N = 1125 atoms), triangles: L = 20 Å (N = 576 atoms).
The non-Gaussian parameter (dotted line) multiplied by a factor 1000 and corresponding to the largest size investigated

(L = 50 Å) is plotted for comparison. The temperature is 3100 K. (b) Function I−(t) =
∫ RC

0
A−(r, t) · 4πr2dr with Rc = 10 Å,

for the oxygen atoms. Different system sizes are considered: full circles: L = 50 Å (N = 9000 atoms), continuous line L = 40 Å
(N = 4608 atoms), empty circles: L = 25 Å (N = 1125 atoms), triangles: L = 20 Å (N = 576 atoms). The temperature is
3100 K.

of the function I+/−(t) (continuous lines). In the inset,
the same functions are plotted on a logarithmic scale in
order to show more accurately the long range correlations.
The inserts in Figure 2 show that the A+/−(r, t) functions
evolution versus r follow a pure exponential decay. The
functions A−(r, t) (Fig. 2b inset) display oscillations due
to an increase of the structural order for the least mobile
atoms (maxima/minima of the function Glmlm(r, 0) are
higher/smaller than maxima/minima of G(r, 0) leading to
oscillations in A−(r, t)). These oscillations do not appear
for the aggregation of the most mobile atoms A+(r, t). We
also observe in Figure 2 that the size of the aggregates is
larger for atoms of low mobility than for atoms of high
mobility as the slope of the exponential decay is larger
for A+(r, t) than for A−(r, t). Atoms of high mobility are
however more correlated at short range than atoms of low
mobility. Indeed, we see in Figure 2 that the maximum
of A+(r, t+) is around 10 for the first neighbour position
compared to A−(r, t−) = 2.6 at the same position. We also
observe in the inset of Figure 2a an increase of the long
range correlation when the time increases (for r > 8 Å
the dashed line curve that corresponds to t = 380 ps
is higher than the continuous line that corresponds to
t = t+ = 65 ps). This increase will lead to a secondary

maximum value in the integral I+(t) (Fig. 3a) due to the
4πr2 factor which increases the importance of long range
distances in I+(t). The origin of this increase of the long
range correlations in A+(r, t) and then of this secondary
maximum of I+(t) is however still unclear. If an increase
of the long range part in A+(r, t) with time may be ex-
pected from the diffusion process we would expect that the
decrease of the short range part will compensate this ef-
fect leading to a global decrease of I+(r, t). As a tentative
explanation we suggest that this increase may originate in
the merging of different aggregates as their size increases
before their total disappearance.

Figures 3a and 3b show the evolution of the dynami-
cal heterogeneity when the system size decreases. In this
calculation, in order to eliminate the simple truncation ef-
fect mentioned above on the size of the heterogeneities, we
have used the same cut-off value Rc = 10 Å in the calcu-
lation of the intensities I+(t) or I−(t) (5) for the different
system sizes. This value of Rc corresponds to the half-size
of the shorter system considered here. We observe that
even without the truncation effect, the dynamical hetero-
geneities decrease when the system size decreases. Sur-
prisingly, this decrease is associated with an increase of
the non-Gaussian parameter. This result is amazing if we
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suppose that the non-Gaussian evolution of the Van Hove
correlation function (1) that results in a non-Gaussian pa-
rameter different from zero, is entirely due to the hetero-
geneity in displacements. A decrease of the heterogeneous
motion will then lead to a decrease of the non-Gaussian
parameter contrary to what is observed here. This result
suggests that the non-Gaussian behaviour is not only due
to the presence of the dynamical heterogeneity but that
other causes are also involved. We note that in the case of a
liquid confined in a pore the opposite result is observed [9].
In this case, the heterogeneity increases together with the
non-Gaussian parameter when the liquid is confined. This
increase of the heterogeneous motion is however maximum
around the pore surface and may then be related to sur-
face effects.

In Figure 3a we show for comparison the non-Gaussian
parameter corresponding to the largest system size inves-
tigated (L = 50 Å) i.e. to the liquid dynamics without
finite-size effects. Figure 3a shows that the Non Gaussian
parameter follows the main time evolution of the intensity
I+(t) of the heterogeneity (aggregation of the most mobile
atoms). This result suggests a relation between the non-
Gaussian parameter and the dynamical heterogeneity as
observed previously in supercooled water [12]. We also ob-
serve in Figure 3a different maxima in the intensity of the
heterogeneity I+(t). These maxima do not appear for the
intensity I−(t) associated with the aggregation of atoms
of low mobility in Figure 3b. The first peak corresponds
to short times (around 0.4 ps). This time regime corre-
sponds to the very beginning of the plateau time regime
observed in the mean square displacement. As others au-
thors have noted [32], we also observe a peak in the Non
Gaussian parameter but for a shorter time scale, this peak
may be related to the Si-O bond breaking process. The
second peak in Figure 3a corresponds approximately to
the maximum of the non-Gaussian parameter. It corre-
sponds to the maximum of the short-range correlation for
the dynamical aggregation as seen in Figure 2a. The third
peak corresponds to an increase of the number of atoms
correlated at longer distances as discussed before (Fig. 2a
inset). This third peak is deeply affected by the cut-off dis-
tance Rc. When Rc decreases this peak decreases sharply,
as seen in Figures 4a and 4b. This result suggests that long
range correlations are partly at the origin of this peak.
This peak is not observed in supercooled water [12], a liq-
uid which presents however, a number of similarities with
silica.

We observe in Figure 3a that size effects on the aggre-
gation of the most mobile atoms are weak, for system sizes
above or equal to 12 Å, when the direct truncation effects
are removed. The size effects begin then to be important
for sizes shorter than or around 10 Å. On the contrary,
Figure 3b shows that size effects appear around 20 Å for
the dynamical aggregation associated with atoms of low
mobility. The heterogeneity associated with atoms of low
mobility appears then to be more sensitive to finite size
effects, independently of the direct truncation effect as-
sociated with the size of the heterogeneity. A comparison
between Figures 3a and 3b shows that the aggregation of

the least mobile atoms decreases much faster with the sys-
tem size than the aggregation of the most mobile atoms.
If for N = 9000 atoms I+(t) and I−(t) are roughly equal,
for N = 576 atoms the intensity I+(t) is approximately
twice the intensity I−(t), as seen in Figures 3a and 3b.
In both cases however, the decrease accelerates abruptly
for N = 1125 atoms, i.e. a half box size of 12.5 Å. This
size corresponds approximately to the size of the hetero-
geneities at this temperature (3100 K) as seen in Fig-
ures 2a and 2b. We notice however that for atoms of low
mobility (I−(t) Fig. 3b) the decrease is progressive before
accelerating for N = 1125 atoms, while atoms of high mo-
bility (I+(t) Fig. 3a) show a different behaviour. There is
no size effects (if we except the simple truncation effect
that will be discussed later) as long as N > 1125 atoms
while the intensity decreases sharply for N shorter than
1125 atoms.

We will now study the direct truncation effect on the
intensity of the dynamical heterogeneity. Figures 4a and
4b show the effect of the truncation of function A+/−(r, t)
with different cutoff values on the intensity I+/−(t) for
the most mobile atoms (Fig. 4a) and the least mobile
atoms (Fig. 4b). For the largest cutoff (Rc = 12 Å) we
observe that the intensities I+(t) and I−(t) are roughly
equal. This equality between the intensities of two sorts of
heterogeneities that are physically very different has been
observed previously in supercooled water [12]. Indeed, the
most mobile atoms shows string like motion while the least
mobile atoms do not [10]; the least mobile atoms are struc-
turally more ordered in the bulk in contrast to the most
mobile atoms; and different characteristic times are ob-
served. Figures 4a and 4b show that the intensity decrease
with the cutoff Rc is more rapid for the aggregation of
atoms of low mobility (Fig. 4b) than for the aggregation
of atoms of high mobility (Fig. 4a). In both cases (Figs. 4a
and 4b) this decrease is continuous. As long as truncation
effects are concerned, we do not see any acceleration of the
decrease of I+/−(t) versus the cutoff value RC for specific
values of RC . Figure 4a shows that the secondary peak
disappears for RC = 5 Å or less. This is in accordance
with a long range effect origin for this peak. Figure 4a
also shows that the intensity of the first small peak stays
constant for RC larger than 8 Å then decreases sharply for
RC smaller than 5 Å. This peak has been attributed to
a collective vibrational mode [11]. This result shows that
the associated correlation range corresponds to a radius
of 5 Å (i.e. the second neighbour distance).

Finally, Figures 3 and 4 show that the decrease of I−(t)
with the system size decrease is larger than the decrease
of I+(t). This result is surprising as it is associated with
a slowing down of the dynamics. If the modification of
the dynamics is due to a modification of the spatially het-
erogeneous dynamics then we expect that a slowing down
of the dynamics will be associated with a decrease of the
dynamical aggregation of the most mobile atoms or an in-
crease of the dynamical aggregation of the atoms of low
mobility. This result suggests that the modification of the
dynamics here is only partly due to the dynamical het-
erogeneity or alternatively that the atoms of low mobility
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(a)

(b)

Fig. 4. (a) Function I+(t) =
∫ RC

0
A+(r, t).4πr2dr for the oxy-

gen atoms and for different values of the cutoff radius RC rang-
ing from 12 to 5 Å. The system size is the same for all curves:
L = 50 Å corresponding to N = 9000 atoms. The tempera-
ture is 3100 K. (b) Function I−(t) =

∫ RC

0
A−(r, t) ·4πr2dr, for

the oxygen atoms and for different values of the cutoff radius
RC ranging from 12 to 5 Å. The system size is the same for
all curves: L = 50 Å corresponding to N = 9000 atoms. The
temperature is 3100 K.

Fig. 5. Van Hove correlation function Gs(r, t) versus distance
r, for the largest and smallest size investigated. Dashed lines:
L = 20 Å (N = 576 atoms) with t = 0.2 ns (left hand side)
and t = 1.75 ns (right hand side); Continuous lines: L = 50 Å
(N = 9000 atoms) with t = 0.1 ns (left hand side) and t = 1 ns
(right hand side). The small dashed line shows the position of
the first oxygen neighbour.

have a much weaker effect on the dynamics than the atoms
of high mobility.

In order to answer this question we will now investigate
the evolution of the self Van Hove correlation function (1)
for different system sizes. Figure 5 shows the Van Hove
Gs(r, t∗) multiplied by a factor 4πr2 and applied to the
system sizes of L/2 = 10 Å and L/2 = 25 Å. We observe
in Figure 5 the tail of the function, which corresponds to
atoms of large mobility, and which has been usually asso-
ciated with dynamical heterogeneity. Due to the presence
of this tail, the Van Hove correlation function cannot be
a Gaussian and the non-Gaussian parameter is then dif-
ferent from zero.

We observe in Figure 5 the self Van Hove correla-
tion functions corresponding to two different box sizes at
two different times. The smaller box results are displayed
with dashed lines and the larger box results with contin-
uous lines. A short dashed line has been added in order
to visualize the first neighbour distance between oxygen
atoms (r = rfirst neighbor). We observe that two kinds of
motion are present: the usual continuous diffusive motion
which is characterized by a widening of the Van Hove func-
tion with time and a continuous shift of the maximum of
4πr2Gs(r, t) to larger r values. Also, the hopping motions
which are characterized by an increase of the Van Hove
for r = rfirst neighbor lead to the appearance of a bump
at this distance and a simultaneous decrease of the first
peak. We observe in Figure 4 that the continuous lines
curves for r < 2 Å display larger shifts to large r values
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showing that the continuous flow motion is more impor-
tant for large boxes than for small boxes. We also observe
that the bump for r = rfirst neighbor is roughly the same for
the two different boxes. This result suggests that the hop-
ping motions are less affected by the system size than the
sluggish heterogeneous dynamics which is in turn deeply
affected. This result may explain the association of an in-
crease of the non-Gaussian parameter with a decrease of
the dynamical aggregations.

Conclusion

We have studied finite size effects on dynamical hetero-
geneity in liquid silica with Molecular Dynamics simula-
tions using the BKS potential model. When the system
size decreases relaxation times are found to increase in
accordance with previous results in finite-size simulations
and confined liquids. It has been suggested that this in-
crease may be related to a modification of the spatially
heterogeneous dynamics in confined liquids. In agreement
with this hypothesis we observe a decrease of the dynami-
cal heterogeneities associated with the most and the least
mobile atoms when the size L decreases. However, we find
that the decrease of the dynamical aggregation associ-
ated with the least mobile atoms is much more important
than the decrease associated with the most mobile atoms.
This result associated with a slowing down of the liquid is
surprising. The decrease of the heterogeneous behaviour
is also in contradiction with the increase of the hetero-
geneities observed in liquids confined in some nanopores.
However an increase of the non-Gaussian parameter ap-
pears both in nanopores and in the finite size simula-
tions. As the non-Gaussian parameter is usually associ-
ated with dynamical heterogeneities, the increase of the
non-Gaussian parameter together with a decrease of dy-
namical heterogeneity is also surprising. This result seems
to eliminate dynamical heterogeneity as the unique cause
for the non-Gaussian behaviour of glass-forming liquids.
Care should be taken when using the non-Gaussian pa-
rameter as a measure of the heterogeneity in glass-forming
liquids.
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